# Difference between revisions of "Super Mario Bros. 3:Notes"

Jump to navigation
Jump to search

m |
|||

Line 13: | Line 13: | ||

* If walking, the limit is 18 (24 dec). | * If walking, the limit is 18 (24 dec). | ||

* If player holds B, | * If player holds B, | ||

− | ** The limit is raised to 28 (40 dec) and | + | ** The limit is raised to 28 (40 dec) and $BD is allowed to increase again. |

** As long as abs($BD) stays >= 28, the P-timer $515 cycles from 7, and every time it elapses an arrow is added to the P-meter. | ** As long as abs($BD) stays >= 28, the P-timer $515 cycles from 7, and every time it elapses an arrow is added to the P-meter. | ||

** When the P starts blinking, the player is in "flight mode": | ** When the P starts blinking, the player is in "flight mode": |

## Revision as of 12:12, 13 January 2010

Back to Super Mario Bros. 3 page.

# Disassembly/reverse engineering notes

All values given are hexadecimal unless noted otherwise. Various important bits of code follow below. Unless marked as "subroutine" you can NOT jump directly to these addresses, and even then there might be side effects.

Wording on countdown timers: "cycles from xx" means the timer is repeatedly set to xx, allowed to reach 0, gets set to xx again etc.

## Player physics/movement

### Horizontal movement

- If the player holds L/R the horizontal velocity $BD will start to increase (todo: what's the exact increment?) at around 1 per frame. The same acceleration is always used when walking/running/dashing.
- abs($BD) can at most reach a limit that varies depending on things below.
- If walking, the limit is 18 (24 dec).
- If player holds B,
- The limit is raised to 28 (40 dec) and $BD is allowed to increase again.
- As long as abs($BD) stays >= 28, the P-timer $515 cycles from 7, and every time it elapses an arrow is added to the P-meter.
- When the P starts blinking, the player is in "flight mode":
- 1) The limit is raised to 38 (56 dec) and $BD is allowed to increase again.
- 2) The P-timer is LOCKED to the value 15 (why that value? could be anything but 0).
- 3) Jumping now launches into flight, (if player has a suitable powerup, otherwise just jumping high).
- 4) The flight-limit countdown timer $056E is set to XX (todo: fix value).

- Player exits "flight-mode" when one of the following happens: (NOT COMPLETE)
- Touches ground.
- Flight-limit timer $056E elapses.

- Once no longer in "flight-mode", the P-meter timer cycles from 23. Every time it elapses an arrow is removed from the P-meter.
- You only begin to fill up the P-meter again if you accelerate to abs($BD) >= 28.

### $AC5A Jump power

$AC5A:A5 BD LDA $00BD ; Load player horz velocity $AC5C:10 03 BPL $AC61 ; If negative, $AC5E:20 0F DD JSR $DD0F ; take absolute value $AC61:4A LSR ; Divide by 16 $AC62:4A LSR $AC63:4A LSR $AC64:4A LSR $AC65:AA TAX ; X = A, going to use it as an index $AC66:AD 47 A6 LDA $A647 ; Load default jump velocity $AC69:38 SEC $AC6A:FD 48 A6 SBC $A648,X ; Subtract from the jump velocity (remember lower means more power) using the table 00,02,04,08. ; Thus a higher horizontal speed means a more powerful jump. $AC6D:85 CF STA $00CF ; Store as new vertical velocity.

### $ACA1 Application of gravity

$ACA1:A0 05 LDY #$05 ; Y = default falling gravity $ACA3:A5 CF LDA $00CF ; Load current vertical velocity $ACA5:C9 E0 CMP #$E0 ; $ACA7:10 0D BPL $ACB6 ; If currently rising and v vel is still faster than E0, $ACA9:AD 79 05 LDA $0579 ; Don't know what 0579 is... unused? Debugger never sees a nonzero value. $ACAC:D0 0D BNE $ACBB $ACAE:A5 17 LDA $0017 ; Read gamepad. 80 is jump key, so value will appear negative! $ACB0:10 04 BPL $ACB6 ; If jump pressed, $ACB2:A0 01 LDY #$01 ; Y = jump gravity (lower than normal) $ACB4:D0 05 BNE $ACBB ; $ACB6:A9 00 LDA #$00 ; This is run if jump key is NOT pressed $ACB8:8D 79 05 STA $0579 ; So what does it do? $ACBB:98 TYA ; A=Y $ACBC:18 CLC ; $ACBD:65 CF ADC $00CF ; Add gravity to current vertical velocity $ACBF:85 CF STA $00CF ; And store back

So, jumps are aborted either by the user releasing the button (bit 7 in 0017 is zero) or the 00CF is more positive than E0. Since SOME gravity is always applied, this ensures jumps are aborted.

### $BFCC (Subroutine) Clamp Y velocity to the maximum

$BFCC:A5 CF LDA $00CF ; Load current vertical velocity $BFCE:30 08 BMI $BFD8 ; Negative? Then skip clamping. $BFD0:C9 40 CMP #$40 ; #$40 is the maximum fall vel (note: gravity is added afterwards so the effective value is 45) $BFD2:30 04 BMI $BFD8 ; Less than this? Then skip clamping. $BFD4:A9 40 LDA #$40 ; Replace $00CF with the maximum fall vel. $BFD6:85 CF STA $00CF $BFD8:A2 12 LDX #$12 ; UNKNOWN $BFDA:20 93 BF JSR $BF93 ; UNKNOWN $BFDD:60 RTS